Increased association of ZO-1 with connexin43 during remodeling of cardiac gap junctions.
نویسندگان
چکیده
The intercellular geometry of connexin43 (Cx43) gap junctional coupling is key to coordinated spread of electrical activation through the ventricle of the mammalian heart. A progressive redistribution of electrical and mechanical junctions into intercalated discs occurs during postnatal development. Breakdown of disc-localized pattern in the adult heart, to recapitulate immature distributions, is thought to be key to the genesis of conduction disturbance and arrhythmia. Recently, ZO-1 (a PDZ-MAGUK protein), has been suggested to have a role in generating coupling geometries between myocytes. We therefore investigated the codistribution of ZO-1 with Cx43 and N-cadherin in the adult rat ventricle using quantitative immunoconfocal and immunoelectron microscopy. These analyses indicated that, whereas ZO-1 and Cx43 codistribute within discs, only low to moderate point-by-point colocalization of Cx43 and ZO-1 is found within these domains compared with the relatively high level of colocalization between N-cadherin and ZO-1. By contrast, levels of association between Cx43 and ZO-1 increased rapidly and significantly (P<0.001) after partial or complete enzymatic dissociation of myocytes from intact ventricle--a treatment known to induce gap junction endocytosis. Coimmunoprecipitation using Cx43- and ZO-1-specific antibodies confirmed that significantly (P<0.03) increased ZO-1 is precipitated relative to Cx43 in freshly dissociated myocytes as compared with intact ventricle. On immunoblots, decreases in Cx43 relative mobility, consistent with increased phosphorylation, were observed following myocyte dissociation. The increased ZO-1-Cx43 association that occurs after remodeling of myocyte intercellular contacts indicates the possibility of unanticipated roles for ZO-1 in gap junction turnover during cardiac development and disease processes.
منابع مشابه
Gap junction remodelling in human heart failure is associated with increased interaction of connexin43 with ZO-1
AIMS Remodelling of gap junctions, involving reduction of total gap junction quantity and down-regulation of connexin43 (Cx43), contributes to the arrhythmic substrate in congestive heart failure. However, little is known of the underlying mechanisms. Recent studies from in vitro systems suggest that the connexin-interacting protein zonula occludens-1 (ZO-1) is a potential mediator of gap junct...
متن کاملZO-1 Alters Connexin43 Gap Junction Size and Organization by Influencing Channel Accretion
Regulation of gap junction (GJ) organization is critical for proper function of excitable tissues such as heart and brain, yet mechanisms that govern the dynamic patterning of GJs remain poorly defined. Here, we show that zonula occludens (ZO)-1 localizes preferentially to the periphery of connexin43 (Cx43) GJ plaques. Blockade of the PDZ-mediated interaction between ZO-1 and Cx43, by genetic t...
متن کاملDetailed Regulatory Mechanism of the Interaction between ZO-1 PDZ2 and Connexin43 Revealed by MD Simulations
The gap junction protein connexin43 (Cx43) binds to the second PDZ domain of Zonula occludens-1 (ZO-1) through its C-terminal tail, mediating the regulation of gap junction plaque size and dynamics. Biochemical study demonstrated that the very C-terminal 12 residues of Cx43 are necessary and sufficient for ZO-1 PDZ2 binding and phosphorylation at residues Ser (-9) and Ser (-10) of the peptide c...
متن کاملRemodeling of cell-cell and cell-extracellular matrix interactions at the border zone of rat myocardial infarcts.
At the border zone of myocardial infarcts, surviving cardiomyocytes achieve drastic remodeling of cell-cell and cell-extracellular matrix interactions. Spatiotemporal changes in these interactions are likely related to each other and possibly have significant impact on cardiac function. To elucidate the changes, we conducted experimental infarction in rats and performed 3-dimensional analysis o...
متن کاملA peptide mimetic of the connexin43 carboxyl terminus reduces gap junction remodeling and induced arrhythmia following ventricular injury.
RATIONALE Remodeling of connexin (Cx)43 gap junctions (GJs) is linked to ventricular arrhythmia. OBJECTIVES A peptide mimetic of the carboxyl terminal (CT) of Cx43, incorporating a postsynaptic density-95/disks-large/ZO-1 (PDZ)-binding domain, reduces Cx43/ZO-1 interaction and GJ size remodeling in vitro. Here, we determined: (1) whether the Cx43-CT mimetic αCT1 altered GJ remodeling followin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 90 3 شماره
صفحات -
تاریخ انتشار 2002